منابع مشابه
A Homogeneous Extremally Disconnected Countably Compact Space
It is well known that no infinite homogeneous space is both compact and extremally disconnected. (Since there are infinite compact homogeneous spaces and infinite extremally disconnected homogeneous spaces, it is the combination of compactness and extremal disconnectedness that brings about this result.) The following question then arises naturally: How “close to compact” can a homogeneous, ext...
متن کاملA Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کاملSEQUENTIALLY COMPACT S-ACTS
The investigation of equational compactness was initiated by Banaschewski and Nelson. They proved that pure injectivity is equivalent to equational compactness. Here we define the so called sequentially compact acts over semigroups and study some of their categorical and homological properties. Some Baer conditions for injectivity of S-acts are also presented.
متن کاملa class of compact operators on homogeneous spaces
let $varpi$ be a representation of the homogeneous space $g/h$, where $g$ be a locally compact group and $h$ be a compact subgroup of $g$. for an admissible wavelet $zeta$ for $varpi$ and $psi in l^p(g/h), 1leq p
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2004
ISSN: 0166-8641
DOI: 10.1016/s0166-8641(03)00215-3