A compact homogeneous S-space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Homogeneous Extremally Disconnected Countably Compact Space

It is well known that no infinite homogeneous space is both compact and extremally disconnected. (Since there are infinite compact homogeneous spaces and infinite extremally disconnected homogeneous spaces, it is the combination of compactness and extremal disconnectedness that brings about this result.) The following question then arises naturally: How “close to compact” can a homogeneous, ext...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

SEQUENTIALLY COMPACT S-ACTS

‎‎The investigation of equational compactness was initiated by‎ ‎Banaschewski and Nelson‎. ‎They proved that pure injectivity is‎ ‎equivalent to equational compactness‎. ‎Here we define the so‎ ‎called sequentially compact acts over semigroups and study‎ ‎some of their categorical and homological properties‎. ‎Some‎ ‎Baer conditions for injectivity of S-acts are also presented‎.

متن کامل

a class of compact operators on homogeneous spaces

let  $varpi$ be a representation of the homogeneous space $g/h$, where $g$ be a locally compact group and  $h$ be a compact subgroup of $g$. for  an admissible wavelet $zeta$ for $varpi$  and $psi in l^p(g/h), 1leq p

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2004

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(03)00215-3